Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Sameer Chavda, ${ }^{\text {a }}$ Jason Eames, ${ }^{\mathbf{b}}$ * Majid Motevalli ${ }^{\mathbf{a}}$ and Nela Malatestic ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, and ${ }^{\text {c }}$ Department of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia

Correspondence e-mail: j.eames@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.067$
Data-to-parameter ratio $=7.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(-)-(4R,5S)-4-Methyl-3-[2(S)-phenoxypropionyl]-5-phenyloxazolidin-2-one

The title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$, formed from enantiomerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-phenoxypropanoyl chloride, crystallises with $Z^{\prime}=2$. The two carbonyl groups in each molecule are oriented anti to each other, while the two methyl groups are oriented syn to each other.

Comment

The title compound, (I), is the sixth in a series of structurally related compounds, introduced in our earlier report (Coumbarides, Eames et al., 2006a). With $R^{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$, the reaction shown in that report yielded the anti-syn and syn-syn diastereomers in 44 and 45% yields, respectively. The syn-syn diastereomer was described previously (Coumbarides, Eames et al., 2006b). The title compound, (I), is the anti-syn diastereomer.

(I)

Compound (I) contains two molecules in the asymmetric unit in the space group $P 2_{1}$, displaying closely comparable conformations (Fig. 1). In line with our previous reports (Coumbarides, Eames et al., 2006a,b; Coumbarides, Dingjan et al., 2006; Chavda et al., 2006a,b), the carbonyl groups $(\mathrm{C} 3 A=\mathrm{O} 2 A / \mathrm{C} 11 A=\mathrm{O} 3 A$ and $\mathrm{C} 3 B=\mathrm{O} 2 B / \mathrm{C} 11 B=\mathrm{O} 3 B)$ are oriented anti to each other, with torsion angles $\mathrm{O} 3-\mathrm{C} 11-$ $\mathrm{N} 1-\mathrm{C} 3=176.5(2)$ and $175.9(2)^{\circ}$ for molecules A and B, respectively. The two methyl groups ($\mathrm{C} 4 A / \mathrm{C} 19 A$ and $\mathrm{C} 4 B$ / $C 19 B$) lie to the same side of the molecule. The principal distinction between the two independent molecules of (I) lies in the orientations of the phenoxypropionyl substituent with respect to the central portion of the molecule, with torsion angles $\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 4=-25.6$ (3) and -14.6 (3) ${ }^{\circ}$ for molecules A and B, respectively. This subtle difference can be attributed to the influence of intermolecular interactions in the solid state. As observed in the phenylpropionyl derivative (Coumbarides, Eames et al., 2006a), adjacent molecules approach each other in a 'side-on' manner (Fig. 2), and the shortest intermolecular contacts are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1).

Received 27 June 2006
Accepted 12 August 2006

Experimental

The title compound was obtained from the same synthesis as the synsyn diastereomer, as reported previously (Coumbarides, Eames et al., 2006b). The anti-syn diastereomer, (I), was obtained as colourless crystals $\left\{4.03 \mathrm{~g}, 44 \%\right.$ yield, m.p. $362-365 \mathrm{~K}, R_{\mathrm{F}} 0.61$ [light petroleum (b.p 313-333 K)/diethyl ether, 1:1]\}. Spectroscopic analysis: $[\alpha]_{\mathrm{D}}^{22}=$ $-35.5\left(\mathrm{CHCl}_{3}, 293 \mathrm{~K}\right.$, concentration 2.0 g per 100 ml$)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\left.v_{\text {max }}, \mathrm{cm}^{-1}\right): 1776(\mathrm{C}=\mathrm{O}), 1714(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.21\left(7 \mathrm{H}, m, 7 \times \mathrm{CH} ; \mathrm{Ph}_{\mathrm{a}}\right.$ and $\left.\mathrm{Ph}_{\mathrm{b}}\right), 6.97-6.86(3 \mathrm{H}, m, 3 \times \mathrm{CH}$; Ph_{a} or $\left.\mathrm{Ph}_{\mathrm{b}}\right), 5.94(1 \mathrm{H}, q, J=6.7 \mathrm{~Hz}, \mathrm{PhOCH}), 5.75(1 \mathrm{H}, d, J=7.4 \mathrm{~Hz}$, PhCHO), 4.81 ($1 \mathrm{H}, m, \mathrm{CHN}$), 1.66 ($3 \mathrm{H}, d, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCO}$), $0.89\left(3 \mathrm{H}, d, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $172.0(\mathrm{NC}=\mathrm{O}), 157.4(i-\mathrm{CO} ; \mathrm{Ph}), 152.8(\mathrm{OC=O}), 133.1$ ($i-\mathrm{C}$; $\mathrm{Ph}), 129.7,129.0,128.9,125.7,121.6,115.1\left(6 \times \mathrm{CH} ; \mathrm{Ph}_{\mathrm{a}}\right.$ and $\left.\mathrm{Ph}_{\mathrm{b}}\right), 79.8$ (PhCHO), $71.8(\mathrm{PhOCH}), 54.7(\mathrm{CHN})$, $18.3\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$; found: $\mathrm{MH}^{+} 326.1393 ; \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}$ requires 326.1392.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$
$M_{r}=325.35$
Monoclinic, $P 2_{1}$
$a=11.268$ (7) \AA
$b=10.493$ (5) \AA
$c=15.008$ (9) \AA
$\beta=102.96$ (4) ${ }^{\circ}$
$V=1729.3(17) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 8490 measured reflections
3223 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.067$
$S=1.01$
3223 reflections
438 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0293 P)^{2}\right. \\
& +0.3025 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0167 \text { (13) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 3 B$	1.00	2.61	$3.373(3)$	133
$\mathrm{C} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 A$	1.00	2.57	$3.568(3)$	174
$\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{O} 4 B^{\mathrm{i}}$	0.95	2.52	$3.445(4)$	165
$\mathrm{C} 18 B-\mathrm{H} 18 B \cdots \mathrm{O} 4 A^{\text {ii }}$	0.95	2.69	$3.564(4)$	154

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$.
H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence of significant anomalous scattering effects, the few measured Friedel pairs have been merged. The absolute configuration is assigned on the basis of the known configuration of the starting material (Coumbarides, Eames et al., 2006a).

Figure 1
Two molecules in the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Figure 2
The crystal packing of (I) viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

Chavda, S., Eames, J., Flinn, A., Motevalli, M. \& Malatesti, N. (2006a). Acta Cryst. E62, o4037-o4038.
Chavda, S., Eames, J., Flinn, A., Motevalli, M. \& Malatesti, N. (2006b). Acta Cryst. E62, o4039-o4041.
Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. \& Malatesti, N. (2006). Acta Cryst. E62, o4035-o4036.

organic papers

Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. \& Yohannes, Y. (2006a). Acta Cryst. E62, o4032-o4034
Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. \& Yohannes, Y. (2006b). Acta Cryst. E62, o4041-o4042.
Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

